

How to think about allyl radicals and allyl cations

Allylic Halogenation

Propagation

Termination

When analyzing allylic halogenation reactions (NBS and hv)

- **1. Consider all possible allylic radicals that can be formed.**
- **2. Analyze all contributing structures for all of the allylic radicals.**
- **3. Add a Br atom at the site of the unpaired electron for all contributing structures for all of the allylic radicals.**
- **4. From all of the possible products, the predominant product is the one THAT IS THE MOST STABLE ALKENE – the most substitued alkene – alkyl groups stabilize alkenes –** *trans* **over** *cis***.**
- **5. Note: It is OK if the product you choose derives from an allylic radical contributing structure that is a minor contributor. FOR THIS REACTION WE ONLY CARE ABOUT THE RELATIVE STABILITIES OF THE PRODUCT ALKENES.**

Big Change For this reaction you need to choose the most stable product, NOT worrying about the most table contributing as structure of an allylic radical intermediate

For subtle reasons (not discussed) H-Br, ROOR and heat gives very little allylic halogenation, and NBS/hu or heat gives very little alkene addition even though they both involve Br: and an alkene starting Please accept this

Never use Br₂ and br alkene

New Concept -> Leaving Group ^A group that can make a single bond to carbon that can make a stable species when it departs

I nucleophiles/bases

1st New Mechanism S_{N}) \leftarrow S_{1} molecular \rightarrow both the
haloalkane and ubstitution (Nucleophilic involved in the rate determining (slow) step of the reaction

The S_N^2 *Mechanism* Na^{\bigoplus} N_a^{\bigoplus} H $\frac{E}{2}$ set \overline{H} \overline{O} \overline{O} \overline{O} $H_h C$ $H H$ H Nucleophile – > must attack
at the back of the C-Br fransition state being ken
bond => This angle and Transition state bond. I This angle and
direction of attack helps break the ^C Br bond $f(g^{\alpha})$ ∞ $\frac{11}{10}-\frac{10}{10}-\frac{1}{10}$
at $\frac{11}{10}-\frac{10}{10}$ This This The a^{λ_0} if a^{λ_0} if λ_1 Products Summary: The nucleophile attacks by making ^a new bond to C from the back of the C-X bond just as X leaves Regiochemistry: N/A Stereochemistry: WERSION at the site of reaction Example: $NaN₃$ $\mathcal{N}_{\mathbf{2}}$ \sim I PNucleophile (Leaving
Group